Improvisacion de Contacto

Articulos

Primera ley de Newton o Ley de Inercia

En ocasiones, esta ley se nombra también Principio de Galileo.

  • En la ausencia de fuerzas exteriores, toda partícula continúa en su estado de reposo o de movimiento rectilíneo y uniforme respecto de un sistema de referencia inercial o galileano.

La Primera ley constituye una definición de la fuerza como causa de las variaciones de velocidad de los cuerpos e introduce en física el concepto de sistemas de referencia inerciales o sistemas de referencia galileanos. Los sistemas no inerciales son todos aquellos sistemas de referencia que se encuentran acelerados.

En esta observación de la realidad cotidiana conlleva la construcción de los conceptos de fuerza, velocidad y estado. El estado de un cuerpo queda entonces definido como su característica de movimiento, es decir, su posición y velocidad que, como magnitud vectorial, incluye la rapidez, la dirección y el sentido de su movimiento. La fuerza queda definida como la acción mediante la cual se cambia el estado de un cuerpo.

En la experiencia diaria, los cuerpos están sometidos a la acción de fuerzas de fricción o rozamiento que los van frenando progresivamente. La no comprensión de este fenómeno hizo que, desde la época de Aristóteles y hasta la formulación de este principio por Galileo y Newton, se pensara que el estado natural de movimiento de los cuerpos era nulo y que las fuerzas eran necesarias para mantenerlos en movimiento. Sin embargo, Newton y Galileo mostraron que los cuerpos se mueven a velocidad constante y en línea recta si no hay fuerzas que actúen sobre ellos. Este principio constituyó uno de los descubrimientos más importantes de la física.

Segunda Ley de Newton o Ley de la Fuerza

Existen diversas maneras de formular la segunda ley de Newton, que relaciona las fuerzas actuantes y la variación de la cantidad de movimiento o momento lineal. La primera de las formulaciones, que presentamos a continuación es válida tanto en mecánica newtoniana como en mecánica relativista:

  • La variación del momento lineal de un cuerpo es proporcional a la resultante total de las fuerzas actuando sobre dicho cuerpo y se produce en la dirección en que actúan las fuerzas.

En términos matemáticos esta ley se expresa mediante la relación:

 \vec{F}=\frac{d \vec{p} }{d t}


La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar, de que la definición de momento lineal es diferente en las dos teorías. En la teoría newtoniana el momento lineal se define según (1a) mientras que en la teoría de la relatividad de Einstein se define mediante (1b):

\begin{cases} \vec{p}=m\vec{v} & (\mbox{1a}) \\
\vec{p}=\cfrac{m \vec{v}}{ \sqrt{1-\frac{v^2}{c^2}}} & (\mbox{1b}) \end{cases}


donde m es la masa inercial de la partícula y \vec{v} la velocidad de ésta medida desde un cierto sistema inercial.

Esta ley constituye la definición operacional del concepto de fuerza, ya que tan sólo la aceleración puede medirse directamente. De una forma más simple, en el contexto de la mecánica newtoniana, se podría también decir lo siguiente:

  • La fuerza que actúa sobre un cuerpo es directamente proporcional al producto de su masa y su aceleración
\vec{F} = m \cdot \vec{a} (2a


Esta segunda formulación de hecho incluye implícitamente definición (1) según la cual el momento lineal es el producto de la masa por la velocidad. Como ese supuesto implícito no se cumple en el marco de la teoría de la relatividad de Einstein (donde la definición es (2)), la expresión de la fuerza en términos de la aceleración en la teoría de la relatividad toma una forma diferente. Por ejemplo, para el movimiento rectilíneo de una partícula en un sistema inercial se tiene que la expresión equivalente a (3) es:

\vec{F} = m \vec{a} \left( 1-\frac{v^2}{c^2} \right)^{-\frac{3}{2}} (2b


Si la velocidad y la fuerza no son paralelas la expresión es bastante más complicada:

\vec{F} = \frac{m\vec{a}}{(1-\frac{v^2}{c^2})^{\frac{1}{2}}} + \frac{m(\vec{v}\cdot\vec{a})\vec{v}}{c^2(1-\frac{v^2}{c^2})^{\frac{3}{2}}} (2c


Tercera Ley de Newton o Ley de acción y reacción

  • Por cada fuerza que actúa sobre un cuerpo, éste realiza una fuerza igual pero de sentido opuesto sobre el cuerpo que la produjo. Dicho de otra forma: Las fuerzas siempre se presentan en pares de igual magnitud y sentido opuesto y están situadas sobre la misma recta.

Esta ley, junto con las anteriores, permite enunciar los principios de conservación del momento lineal y del momento angular.

Ley de acción y reacción fuerte

En la ley de acción y reacción fuerte las fuerzas, además de ser de la misma magnitud y opuestas, son colineales. La forma fuerte de la ley no se cumple siempre. En particular, la parte magnética de la fuerza de Lorentz que se ejercen dos partículas en movimiento no son iguales y de signo contrario. Esto puede verse por cómputo directo. Dadas dos partículas puntuales con cargas q1 y q2 y velocidades \mathbf{v}_i, la fuerza de la partícula 1 sobre la partícula 2 es:

\mathbf{F}_{12}= q_2 \mathbf{v}_2\times \mathbf{B}_1 = \frac{\mu q_2q_1}{4\pi}\ \frac{\mathbf{v}_2\times (\mathbf{v}_1\times\mathbf{\hat{u}}_{12})}{d^2}


donde d la distancia entre las dos partículas y \mathbf{\hat{u}}_{12} es el vector director unitario que va de la partícula 1 a la 2. Análogamente, la fuerza de la partícula 2 sobre la partícula 1 es:

\mathbf{F}_{21}= q_1 \mathbf{v}_1\times \mathbf{B}_2 = \frac{\mu q_2q_1}{4\pi}\ \frac{\mathbf{v}_1\times (\mathbf{v}_2\times(-\mathbf{\hat{u}}_{12})) }{d^2}


Empleando la identidad vectorial \mathbf{a}\times(\mathbf{b}\times\mathbf{c}) = (\mathbf{a}\cdot\mathbf{c})\mathbf{b} - (\mathbf{a}\cdot\mathbf{b})\mathbf{c}, puede verse que la primera fuerza está en el plano formado por \mathbf{\hat{u}}_{12} y \mathbf{v}_1 que la segunda fuerza está en el plano formado por \mathbf{\hat{u}}_{12} y \mathbf{v}_2. Por tanto, estas fuerzas no siempre resultan estar sobre la misma línea, aunque son de igual magnitud.

Ley de acción y reacción débil

Como se explicitó en la sección anterior ciertos sistemas magnéticos no cumplen el enunciado fuerte de esta ley (tampoco lo hacen las fuerzas eléctricas ejercidas entre una carga puntual y un dipolo). Sin embargo si se relajan algo las condiciones los anteriores sistemas sí cumplirían con otra formulación más débil o relajada de la ley de acción y reacción. En concreto los sistemas descritos que no cumplen la ley en su forma fuerte, si cumplen la ley de acción y reacción en su forma débil:

La acción y la reacción deben ser de la misma magnitud y sentido opuesto (aunque no necesariamente deben encontrarse sobre la misma línea)

Todas las fuerzas de la mecánica clásica y el electromagnetismo no relativista cumplen con la formulación débil, si además las fuerzas están sobre la misma línea entonces también cumplen con la formulación fuerte.

Antes... | Ahora... | Semana de Contact Improvisation | Historia | Articulos | Fotos | Videos | Links

rubon99.jpg